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Abstract—Multimodal Large Language Models (MLLMs) 

process visual, acoustic, and textual inputs, overcoming the 

limitations of single-modality LLMs. However, existing 

benchmarks often neglect tri-modal evaluation in Traditional 

Chinese and overlook inference latency. To fill this gap, we 

introduce Multi-TW, the first Traditional Chinese benchmark 

for evaluating the performance and latency of any-to-any 

multimodal models. Multi-TW comprises 900 multiple-choice 

questions (image & text, audio & text pairs) from authentic 

proficiency tests developed with the Steering Committee for the 

Test of Proficiency-Huayu (SC-TOP). We evaluated various 

any-to-any models and vision-language models (VLMs) with 

audio transcription. Our findings show closed-source models 

generally outperform open-source ones across modalities, 

though open-source models can excel in audio tasks. End-to-end 

any-to-any pipelines demonstrate significant latency advantages 

over VLM with separate audio transcription. Multi-TW offers a 

holistic view of model capabilities, underscoring the need for 

Traditional Chinese fine-tuning and efficient multimodal 

architectures. 

I. INTRODUCTION 

Pre-trained Large Language Models (LLMs), such as 
LlaMA [7], [8] and Qwen [10], [11], [12], have demonstrated 
remarkable success across a wide range of natural language 
processing (NLP) tasks. However, these text-only models 
remain constrained by their single-modality input. To address 
this limitation, recent research has increasingly focused on 
Multimodal Large Language Models (MLLMs), which can 
jointly process and reason over visual, acoustic, and textual 
inputs [1], [2].  

In the visual domain, models such as CLIP [14] and 
Flamingo [15] have shown that contrastive pretraining and 
multimodal fusion architectures enable state-of-the-art 
zero-shot image classification, image captioning, and few-shot 
visual reasoning [3], [4]. Building upon these breakthroughs, 
Vision-Language Models (VLMs) like LLaVA [16] have 
pushed the frontier further, inspiring fine-tuned successors 
such as Vicuna [17] and Alpaca [23], which expand 
multimodal reasoning capabilities across broader task 
domains. The models evaluated in our experiments, such as 
the LLaVA series, PaliGemma 2 [22], Idefics2 [21], Llama 
3.2-Vision [18], UI-TARS [19] and Qwen VL [20] series, 
represent the cutting edge in these developments. 

With the evolution of VLMs, increasing attention has 
turned toward audio-language modeling. Audio Language 
Models (ALMs) typically employ an audio encoder that 
transforms raw waveform signals into token representations 
that can be processed by a language model [3], [4]. For 

 
 

instance, Qwen-Audio [26] and Qwen-Audio2 [27] utilize the 
Qwen model series [10], [11] as their language modeling 
backbone and incorporate OpenAI’s Whisper [24] for 
end-to-end speech recognition. Other architectures, such as 
AudioPaLM [28], fuse the text-based capabilities of PaLM-2 
[13] with the discrete audio token modeling of AudioLM [25], 
enabling both high-quality speech recognition and 
speech-to-speech translation in a unified framework. 

More recently, research has progressed toward universal 
any-to-any multimodal models that support cross-modal input 
and output across vision, audio, and text. Prominent examples 
include NExT-GPT [29], AnyGPT [30] and Unified-IO 2 [31], 
all pushing the limits of unified multimodal intelligence. Later, 
this trend transferred into multilingual support, as shown in 
open-source models like Baichuan-Omni-1.5 [32] and 
Qwen2.5-Omni [33], as well as closed-source systems such as 
Gemini, which achieve strong performance in both Chinese 
and English understanding.  

To rigorously evaluate the capabilities of such models, 
several benchmarks have been proposed. However, most 
evaluations still assess only two modalities at a time. For 
instance, NExT-GPT [29] and AnyGPT [30] focus on 
pairwise modality evaluations. Recently, Qwen2.5-Omni [33] 
and Baichuan-Omni-1.5 [32] have adopted OmniBench [34], a 
tri-modal benchmark designed to assess performance across 
text, image, and audio simultaneously, providing deeper 
insight into a model’s unified reasoning ability. 

Despite these advances, a critical gap remains in the 
evaluation of multimodal models in Traditional Chinese. 
Existing Traditional Chinese benchmarks are largely 
text-based. TMMLU [35] and its extension TMMLU+ [36] 
provide comprehensive text-only evaluations of LLMs. 
VisTW [38] moves into the multimodal space by evaluating 
VLMs on multiple-choice and dialog-based tasks; however, 
no benchmark currently supports comprehensive evaluation 
across textual, visual, and acoustic modalities in Traditional 
Chinese. In addition to this linguistic gap, we observe that 
most existing benchmarks prioritize accuracy, often 
overlooking model inference time. This approach is 
insufficient for real-world applications where both accuracy 
and efficiency are crucial. 
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Figure 1.  Illustration of data collection interface. 

To address this gap, we introduce Multi-TW, the first 
benchmark specifically designed for evaluating the 
performance and latency of any-to-any multimodal models 
in Traditional Chinese. Multi-TW consists of image-text 
and audio-text pairs, enabling rigorous evaluations that 
cover textual, visual, and acoustic modalities. Datasets are 
available on Hugging Face: 

https://huggingface.co/datasets/ntuai/multi-tw. 

In summary, our contributions are as follows: 

• We propose Multi-TW, the first Traditional Chinese 
benchmark for rigorous evaluation across text, audio, 
and visual inputs. 

• We collaborated with the Steering Committee for the 
Test of Proficiency-Huayu to incorporate authentic, 
real-world assessment tasks into our machine 
evaluation framework. 

• We conducted comprehensive experiments on both 
any-to-any models and VLMs (the latter using ASR 
for audio input). 

• In addition to accuracy, we evaluate latency to offer a 
more holistic view of model performance in 
real-world settings. 

II. MULTI-TW BENCHMARK 

A. Data Construction 

To construct the Multi-TW dataset, we collaborated with 
the Steering Committee for the Test of Proficiency-Huayu 
(SC-TOP), a dedicated agency responsible for developing and 
promoting Taiwan’s Mandarin proficiency tests for non-native 
speakers. These exams, primarily in a multiple-choice format, 
underwent rigorous utility analysis to ensure their practical 
value and effectiveness. 

The construction phase spanned from September 2023 to 
December 2023, primarily using publicly available data. All 
items in Multi-TW underwent a standardized collection and 
processing workflow performed by our research team to 
ensure consistency and accuracy. We developed an interface 
to accelerate data collection and automate labeling, as 
depicted in Fig.1. Initially, purely textual questions were 
removed. The remaining items, which involved various 
combinations of modalities, were then curated to form  

 

Figure 2.  Distribution of audio durations in Multi-TW. 

image-text and audio-text pairs. To address data imbalance 
and expand the image-text subset, some questions originally 
coupling image and audio were adapted by extracting their 
ground-truth audio transcripts, which were then paired with 
the corresponding image as the textual component. 
Subsequently, each image-text and audio-text multiple-choice 
item was serialized into a unified JSON schema, containing 
the original question, response options, instructions, and 
references to the separately stored image or audio files.  

B. Quality Control 

To ensure data integrity, each image-text and audio-text 
pair was independently reviewed by a second annotator to 
verify content consistency and accuracy, ensuring the absence 
of syntax errors, missing information, or incorrect answer 
choices. Our quality control process involved four stages. First, 
a completeness check confirmed that each question contained 
all required components: text (prompt, options, and solution 
index), an image or audio file, and associated metadata. 
Entries with missing or inconsistent elements (e.g., a 
mismatched file name) were flagged and corrected. Second, 
we validated file consistency. Each image was viewed to 
confirm it was properly formatted (150 dpi PNG), and each 
audio clip was played to ensure audible clarity in the specified 
128 kbps MP3 (or other, specify format) setting. Invalid or 
corrupted files were replaced or re-processed. Third, we 
verified label accuracy by aligning the text content with the 
corresponding modality. For the image-text subset, the visual 
context had to align with the question stem and options (e.g., 
an illustration of a given scenario). For audio-text items, the 
spoken content was compared with the multiple-choice 
options to verify that the designated answer was correct. After 
all corrections were made, each question was subjected to a 
final review to verify that the files and metadata were correctly 
updated. Only after passing this final check was the question 
approved for inclusion in the final dataset. 

C. Data Analysis 

Multi-TW comprises 900 multiple-choice questions 

curated to assess Traditional Chinese proficiency in a 

multimodal context. The dataset is equally divided into 450 

image-text items and 450 audio-text items. In the following 

sections, we refer to these as 'vision-based items' and 

'audio-based items,' respectively. This balanced design 

enables direct comparison of model performance on visual 

versus auditory modalities paired with Traditional Chinese  
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TABLE I.   
COMPARISON OF MULTI-TW WITH OTHER DATASETS. FOR ALM-BENCH, WE 

ONLY COMPARE THE SUBSET FOR TRADITIONAL CHINESE. (A: AUDIO, T: TEXT, 
V: VISION) (TRADITIONAL CHINESE: ZH, ENGLISH: EN) 

Dataset Modalities Language Test size Subjects 

TMMLU+ T zh 20,118 66 

ALM-Bench T, V zh 52 13 

VisTW-MCQ T, V zh 3,795 21 

OmniBench A, T, V en 1,142 8 

Multi-TW (Ours) A, T, V zh 900 7 

 

Figure 3.  Distribution of question types in Multi-TW. 

text and encourages the development of models that handle 

both input types proficiently. 

The vision-based subset features 397 distinct images and 

includes 407 three-choice items alongside 43 four-choice 

items. These images depict contextual illustrations, diagrams, 

and real-world scenarios. All audio-based items employ a 

four-choice format. Consequently, the 900-item benchmark 

comprises 407 three-choice questions and 493 four-choice 

questions (43 from vision-based and 450 from audio-based). 

For the audio-based items, the average question length is 

approximately 12 words, and the average option length is 

approximately 10 words. The average duration of the audio is 

approximately 107.5 seconds, as illustrated in Fig.2. 

D. Comparison with Existing Benchmarks. 

Multi-TW evaluates multimodal understanding by 

measuring performance on two primary task families: 

vision-based tasks and audio-based tasks. Details of subtask 

distribution are provided in Fig.3, and representative samples 

are shown in Fig. 4. This diverse mix of task types ensures 

that Multi-TW evaluates a broad spectrum of multimodal 

understanding capabilities.  

Table I presents a comparison of Multi-TW with other 

notable Traditional Chinese language evaluation datasets. 

While existing benchmarks like TMMLU+ [36] focus on 

text-only LLM capabilities, and VisTW-MCQ [38] and 

ALM-Bench [37] incorporate vision and text, Multi-TW, to 

the best of our knowledge, is the first benchmark to provide 

comprehensive image-text and audio-text evaluation for 

Traditional Chinese, thereby covering visual, textual, and 

auditory modalities. By unifying these input types within a  

 

Figure 4.  Illustration of samples from the Multi-TW dataset. 

A single benchmark framework for Traditional Chinese fills a 

critical gap and enables a more holistic evaluation of 

multimodal models. Moreover, beyond its rich modality and 

linguistic features, Multi-TW's audio samples average 107.5 

seconds in length, substantially longer than the 9.12 seconds 

typical of OmniBench [34] (which primarily tests English). 

This extended duration enables a more rigorous evaluation of 

long-form listening comprehension abilities. 

III. EXPERIMENTS  

To demonstrate the utility of Multi-TW and establish 
initial performance benchmarks, we conducted experiments 
using a variety of publicly available multimodal language 
models. This section details our experimental setup, the 
models evaluated, and the observed results. 

A. Experiment Setup 

All experiments were conducted on an NVIDIA 
A100-SXM4 80GB GPU. All 900 questions in Multi-TW 
were used for evaluation in a zero-shot setting. The evaluation 
metric reported is exact-match accuracy, reflecting the 
percentage of correctly answered multiple-choice questions. 
We detail our prompting strategy, time measurement 
protocols, and model selection below. 

B. Prompting Strategy. 

 For all evaluated models, a uniform prompt was appended 

to each question. This prompt instructs the model to directly 

output a single character representing the chosen option, 

without any additional explanation or reasoning. The general 

prompt template provided to the models is as follows: 

{question} 僅輸出正確答案的字母，格式必須為 'A', 'B', 'C', 

'D'，輸出限制為單個字母，無需解釋。 This prompt instructs 

the model to directly output a single character representing 

the chosen option, without any additional explanation or 

reasoning. 

C. Time Measurement. 

We recorded the elapsed time for four sequential stages: 
data loading, data preprocessing, model inference, and metric 
computation. Data preprocessing and model inference account 
for the majority of runtime and utilize identical code across all 
open-source models. Therefore, our timing analysis focuses 
primarily on the combined duration of these two phases for 
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open-source models. Closed-source models were omitted 
from this specific latency analysis, as their response times are 
dominated by external API calls and network transmission, 
which are not directly comparable. To eliminate variability 
from differing output lengths, we fixed the model’s maximum 
generation length to one token for all timed experiments. 

D. Model Selection 

We evaluated several any-to-any models that process text, 

image, and audio inputs to generate text output in Traditional 

Chinese, as well as several VLMs where audio input was 

provided via ASR transcripts. These models, presented in 

Tables II and III, span both closed- and open-weight 

categories and were selected based on their state-of-the-art 

performance, availability, architectural diversity, and varying 

degrees of exposure to Chinese language data. 

For closed-source any-to-any models, we selected 

gemini-2.0-flash and gemini-1.5-flash from Google. For 

open-source any-to-any models, we chose the Qwen2.5-Omni 

series and Baichuan-Omni-1.5, both pretrained primarily on 

Simplified Chinese. Although Simplified and Traditional 

Chinese share lexical similarities, they differ substantially in 

character forms and orthographic conventions. We also 

incorporated UnifiedIO-2, an encoder-decoder Transformer 

pretrained from scratch mostly on English data (with a small 

multilingual fraction from mC4 [39]), making it a useful test 

for zero-shot cross-script transfer as it has not been 

specifically fine-tuned for either Chinese variant. For VLMs, 

we employed Whisper-large [24] to transcribe audio inputs 

into text for the audio-text tasks. The selected VLMs include 

Qwen2.5-VL-7B, Qwen2-VL-7B, Llama-3.2-11B-Vision, 

UI-TARS-1.5-7B, Idefics2-8b, the LLaVA series, and 

PaliGemma2. This selection reflects the current landscape 

and provides a broad overview of VLM capabilities on our 

benchmark. 

IV. RESULT AND ANALYSIS 

This section offers a summary of performance across all 
evaluated models on the 900-item Multi-TW benchmark, 
comparing accuracy on the image-text and audio-text subsets 
alongside inference latency. 

A. Performance on Any-to-Any Models. 

Table II illustrates the results for any-to-any models across 
overall accuracy, image-text subset accuracy, audio-text 
subset accuracy, and inference time. Key observations 
include: 

1) The Qwen2.5-Omni series and Baichuan-Omni-1.5, 
despite being primarily pretrained and fine-tuned on 
Simplified Chinese, achieve competitive accuracy on 
Traditional Chinese inputs, particularly on audio-text tasks. 

2) In contrast, UnifiedIO-2-XL, with limited exposure to 
Chinese, often failed to produce meaningful answers. Manual 
inspection of its responses (when constraining output length to 
30 tokens) revealed that in 78 cases the model echoed the first  

TABLE II.   
PERFORMANCE OF ANY-TO-ANY MULTIMODAL MODELS ON MULTI-TW. 

Models 
Accuracy Latency 

Overall 
Image- 

Text 

Audio- 

Text 
Inference Time (s) 

gemini-2.0-flash 0.8900 0.8800 0.9000 - 

gemini-1.5-flash 0.8111 0.7644 0.8578 - 

Qwen2.5-Omni- 

7B 
0.6534 0.4156 0.8911 744 

Baichuan-Omni-

1.5 
0.6289 0.4822 0.7756 569 

Qwen2.5-Omni- 

3B 
0.5878 0.3377 0.8378 712 

UnifiedIO-2-XL 0.2589 0.2600 0.2578 467 

TABLE III.   
PERFORMANCE OF VISION-LANGUAGE MODELS (VLMS) WITH ASR 

(WHISPER-LARGE) ON MULTI-TW. 

Models 

Accuracy Latency 

Overall 
Image- 

Text 

Audio- 

Transcription 

Inference 

Time (s) 

Qwen2.5-VL- 

7B-Instruct 
0.8423 0.8267 0.8578 1216 

Qwen2-VL-7B- 
Instruct 

0.8033 0.7822 0.8244 1187 

UI-TARS- 

1.5-7B 
0.7823 0.7378 0.8267 2131 

Llama-3.2-11B-
Vision-Instruct 

0.5578 0.4711 0.6444 1308 

idefics2-8b 0.4167  0.5156 0.3178 1228 

llava-v1.6- 

mistral-7b 
0.4100 0.4178 0.4022 1305 

llava-v1.6- 
vicuna-7b 

0.3345 0.4022 0.2667 1302 

llava-v1.5-7b 0.3211 0.3911 0.2511 1201 

paligemma2- 
10b-pt-896 

0.2600 0.2800 0.2400 1727 

 

option’s Chinese description, and in 807 cases it consistently 
selected option “A.” 

3) Qwen2.5-Omni-7B exhibited the longest inference time 
among the open-source any-to-any models, approximately 
30.8\% longer than Baichuan-Omni-1.5 (11B parameters). 
This suggests that parameter count is not the sole determinant 
of inference speed. 

4) The results reveal a significant performance gap 
between open-source and closed-source models, especially in 
the image-text domain, highlighting the urgent need for 
dedicated Traditional Chinese fine-tuning and more robust 
vision components in open-source any-to-any models. 

B. Performance on Vision Language Models (with ASR). 

We evaluated a range of VLMs using Whisper-large for 
audio transcription. Table III reports overall accuracy, 
image-text accuracy, audio-transcript-text accuracy, and 
inference time. Key observations are: 

1) Qwen2.5-VL-7B-Instruct and UI-TARS-1.5-7B lead 
among the evaluated VLMs. The competitive results from 
these models, developed by organizations with a strong focus 
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on Chinese AI, suggest that extensive pre-training on relevant 
Chinese-language corpora is a crucial factor for strong 
performance. 

2) In contrast, models like Llama-3.2-11B-Vision-Instruct, 
despite their large parameter counts or general multimodal 
capabilities, exhibit notably lower performance, potentially 
due to less exposure to Traditional Chinese data or specific 
task alignments. 

C. Performance on Latency. 

Open-source any-to-any models completed inference in a 
range of 467–744 seconds for the entire 900-item benchmark. 
In comparison, VLMs coupled with an ASR pipeline 
(Whisper-large for audio transcription, then VLM for 
comprehension) required 1,187–2,131 seconds, reflecting the 
overhead of the two-stage processing for audio-related tasks. 
In addition, while closed-source models' runtimes are not 
directly comparable due to API encapsulation, they generally 
exhibit higher end-to-end latency in practice for batch 
processing due to network factors, though individual query 
latency might be low. 

V. CONCLUSION 

To address the gap in evaluating Multimodal Large 

Language Models capable of processing visual, acoustic, and 

textual inputs, particularly in Traditional Chinese, we 

introduced Multi-TW, the first benchmark of its kind. This 

dataset provides new insights into current multimodal large 

language models' abilities, including their performance and 

latency on Traditional Chinese tasks. 

Our evaluation reveals that while closed-source models 

generally achieve strong performance across both image and 

audio modalities, open-source alternatives currently tend to 

perform better on audio-text tasks compared to image-text 

tasks when using any-to-any architectures. The VLM plus 

ASR approach can achieve strong results but incurs higher 

latency for audio tasks. We also found that end-to-end 

any-to-any models offer notable latency advantages over 

cascaded VLM plus ASR pipelines for processing audio 

inputs. Our findings underscore the need for more appropriate 

architecture designs and targeted fine-tuning data for robust 

multimodal integration, especially for Traditional Chinese.  

In future work, we will examine how cross-lingual transfer 

capabilities influence the performance of Simplified 

Chinese-trained models on Traditional Chinese reasoning 

tasks. We also plan to evaluate latency under more rigorous, 

parallelized experimental conditions and explore alternative 

settings, such as streaming inference. Furthermore, 

expanding Multi-TW to include generative tasks and more 

complex reasoning scenarios will be a key direction. 
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