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Abstract—Multimodal Large Language Models (MLLMs)
process visual, acoustic, and textual inputs, overcoming the
limitations of single-modality LLMs. However, existing
benchmarks often neglect tri-modal evaluation in Traditional
Chinese and overlook inference latency. To fill this gap, we
introduce Multi-TW, the first Traditional Chinese benchmark
for evaluating the performance and latency of any-to-any
multimodal models. Multi-TW comprises 900 multiple-choice
questions (image & text, audio & text pairs) from authentic
proficiency tests developed with the Steering Committee for the
Test of Proficiency-Huayu (SC-TOP). We evaluated various
any-to-any models and vision-language models (VLMs) with
audio transcription. Our findings show closed-source models
generally outperform open-source ones across modalities,
though open-source models can excel in audio tasks. End-to-end
any-to-any pipelines demonstrate significant latency advantages
over VLM with separate audio transcription. Multi-TW offers a
holistic view of model capabilities, underscoring the need for
Traditional Chinese fine-tuning and efficient multimodal
architectures.

I. INTRODUCTION

Pre-trained Large Language Models (LLMs), such as
LlaMA [7], [8] and Qwen [10], [11], [12], have demonstrated
remarkable success across a wide range of natural language
processing (NLP) tasks. However, these text-only models
remain constrained by their single-modality input. To address
this limitation, recent research has increasingly focused on
Multimodal Large Language Models (MLLMs), which can
jointly process and reason over visual, acoustic, and textual
inputs [1], [2].

In the visual domain, models such as CLIP [14] and
Flamingo [15] have shown that contrastive pretraining and
multimodal fusion architectures enable state-of-the-art
zero-shot image classification, image captioning, and few-shot
visual reasoning [3], [4]. Building upon these breakthroughs,
Vision-Language Models (VLMs) like LLaVA [16] have
pushed the frontier further, inspiring fine-tuned successors
such as Vicuna [17] and Alpaca [23], which expand
multimodal reasoning capabilities across broader task
domains. The models evaluated in our experiments, such as
the LLaVA series, PaliGemma 2 [22], Idefics2 [21], Llama
3.2-Vision [18], UI-TARS [19] and Qwen VL [20] series,
represent the cutting edge in these developments.

With the evolution of VLMs, increasing attention has
turned toward audio-language modeling. Audio Language
Models (ALMs) typically employ an audio encoder that
transforms raw waveform signals into token representations
that can be processed by a language model [3], [4]. For

instance, Qwen-Audio [26] and Qwen-Audio?2 [27] utilize the
Qwen model series [10], [11] as their language modeling
backbone and incorporate OpenAl’s Whisper [24] for
end-to-end speech recognition. Other architectures, such as
AudioPalLM [28], fuse the text-based capabilities of PaLM-2
[13] with the discrete audio token modeling of AudioLM [25],
enabling both high-quality speech recognition and
speech-to-speech translation in a unified framework.

More recently, research has progressed toward universal
any-to-any multimodal models that support cross-modal input
and output across vision, audio, and text. Prominent examples
include NEXT-GPT [29], AnyGPT [30] and Unified-10 2 [31],
all pushing the limits of unified multimodal intelligence. Later,
this trend transferred into multilingual support, as shown in
open-source models like Baichuan-Omni-1.5 [32] and
Qwen2.5-Omni [33], as well as closed-source systems such as
Gemini, which achieve strong performance in both Chinese
and English understanding.

To rigorously evaluate the capabilities of such models,
several benchmarks have been proposed. However, most
evaluations still assess only two modalities at a time. For
instance, NEXT-GPT [29] and AnyGPT [30] focus on
pairwise modality evaluations. Recently, Qwen2.5-Omni [33]
and Baichuan-Omni-1.5 [32] have adopted OmniBench [34], a
tri-modal benchmark designed to assess performance across
text, image, and audio simultaneously, providing deeper
insight into a model’s unified reasoning ability.

Despite these advances, a critical gap remains in the
evaluation of multimodal models in Traditional Chinese.
Existing Traditional Chinese benchmarks are largely
text-based. TMMLU [35] and its extension TMMLU+ [36]
provide comprehensive text-only evaluations of LLMs.
VisTW [38] moves into the multimodal space by evaluating
VLMs on multiple-choice and dialog-based tasks; however,
no benchmark currently supports comprehensive evaluation
across textual, visual, and acoustic modalities in Traditional
Chinese. In addition to this linguistic gap, we observe that
most existing benchmarks prioritize accuracy, often
overlooking model inference time. This approach is
insufficient for real-world applications where both accuracy
and efficiency are crucial.
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Figure 1. lllustration of data collection interface.

To address this gap, we introduce Multi-TW, the first
benchmark specifically designed for evaluating the
performance and latency of any-to-any multimodal models
in Traditional Chinese. Multi-TW consists of image-text
and audio-text pairs, enabling rigorous evaluations that
cover textual, visual, and acoustic modalities. Datasets are
available on Hugging Face:

https://huggingface.co/datasets/ntuai/multi-tw.
In summary, our contributions are as follows:

o We propose Multi-TW, the first Traditional Chinese
benchmark for rigorous evaluation across text, audio,
and visual inputs.

e We collaborated with the Steering Committee for the
Test of Proficiency-Huayu to incorporate authentic,
real-world assessment tasks into our machine
evaluation framework.

e We conducted comprehensive experiments on both
any-to-any models and VLMs (the latter using ASR
for audio input).

e In addition to accuracy, we evaluate latency to offer a
more holistic view of model performance in
real-world settings.

Il. MULTI-TW BENCHMARK

A. Data Construction

To construct the Multi-TW dataset, we collaborated with
the Steering Committee for the Test of Proficiency-Huayu
(SC-TOP), a dedicated agency responsible for developing and
promoting Taiwan’s Mandarin proficiency tests for non-native
speakers. These exams, primarily in a multiple-choice format,
underwent rigorous utility analysis to ensure their practical
value and effectiveness.

The construction phase spanned from September 2023 to
December 2023, primarily using publicly available data. All
items in Multi-TW underwent a standardized collection and
processing workflow performed by our research team to
ensure consistency and accuracy. We developed an interface
to accelerate data collection and automate labeling, as
depicted in Fig.1. Initially, purely textual questions were
removed. The remaining items, which involved various
combinations of modalities, were then curated to form
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Figure 2. Distribution of audio durations in Multi-TW.

image-text and audio-text pairs. To address data imbalance
and expand the image-text subset, some questions originally
coupling image and audio were adapted by extracting their
ground-truth audio transcripts, which were then paired with
the corresponding image as the textual component.
Subsequently, each image-text and audio-text multiple-choice
item was serialized into a unified JSON schema, containing
the original question, response options, instructions, and
references to the separately stored image or audio files.

B. Quality Control

To ensure data integrity, each image-text and audio-text
pair was independently reviewed by a second annotator to
verify content consistency and accuracy, ensuring the absence
of syntax errors, missing information, or incorrect answer
choices. Our quality control process involved four stages. First,
a completeness check confirmed that each question contained
all required components: text (prompt, options, and solution
index), an image or audio file, and associated metadata.
Entries with missing or inconsistent elements (e.g., a
mismatched file name) were flagged and corrected. Second,
we validated file consistency. Each image was viewed to
confirm it was properly formatted (150 dpi PNG), and each
audio clip was played to ensure audible clarity in the specified
128 kbps MP3 (or other, specify format) setting. Invalid or
corrupted files were replaced or re-processed. Third, we
verified label accuracy by aligning the text content with the
corresponding modality. For the image-text subset, the visual
context had to align with the question stem and options (e.g.,
an illustration of a given scenario). For audio-text items, the
spoken content was compared with the multiple-choice
options to verify that the designated answer was correct. After
all corrections were made, each question was subjected to a
final review to verify that the files and metadata were correctly
updated. Only after passing this final check was the question
approved for inclusion in the final dataset.

C. Data Analysis

Multi-TW comprises 900 multiple-choice questions
curated to assess Traditional Chinese proficiency in a
multimodal context. The dataset is equally divided into 450
image-text items and 450 audio-text items. In the following
sections, we refer to these as 'vision-based items' and
‘audio-based items," respectively. This balanced design
enables direct comparison of model performance on visual
versus auditory modalities paired with Traditional Chinese
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TABLE I.
COMPARISON OF MULTI-TW WITH OTHER DATASETS. FOR ALM-BENCH, WE

ONLY COMPARE THE SUBSET FOR TRADITIONAL CHINESE. (A: AUDIO, T: TEXT,

V: VISION) (TRADITIONAL CHINESE: ZH, ENGLISH: EN)

Dialogus Comprahension

Dataset Modalities | Language Test size Subjects
TMMLU+ T zh 20,118 66
ALM-Bench T,V zh 52 13
VisTW-MCQ TV zh 3,795 21 PR S
OmniBench ATV en 1,142 8 ‘ig 'f !
Multi-TW (Ours) ATV zh 900 7
Figure 4. Illustration of samples from the Multi-TW dataset.
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Figure 3. Distribution of question types in Multi-TW.

text and encourages the development of models that handle
both input types proficiently.

The vision-based subset features 397 distinct images and
includes 407 three-choice items alongside 43 four-choice
items. These images depict contextual illustrations, diagrams,
and real-world scenarios. All audio-based items employ a
four-choice format. Consequently, the 900-item benchmark
comprises 407 three-choice questions and 493 four-choice
questions (43 from vision-based and 450 from audio-based).
For the audio-based items, the average question length is
approximately 12 words, and the average option length is
approximately 10 words. The average duration of the audio is
approximately 107.5 seconds, as illustrated in Fig.2.

D. Comparison with Existing Benchmarks.

Multi-TW evaluates multimodal understanding by
measuring performance on two primary task families:
vision-based tasks and audio-based tasks. Details of subtask
distribution are provided in Fig.3, and representative samples
are shown in Fig. 4. This diverse mix of task types ensures
that Multi-TW evaluates a broad spectrum of multimodal
understanding capabilities.

Table | presents a comparison of Multi-TW with other
notable Traditional Chinese language evaluation datasets.
While existing benchmarks like TMMLU+ [36] focus on
text-only LLM capabilities, and VisTW-MCQ [38] and
ALM-Bench [37] incorporate vision and text, Multi-TW, to
the best of our knowledge, is the first benchmark to provide
comprehensive image-text and audio-text evaluation for
Traditional Chinese, thereby covering visual, textual, and
auditory modalities. By unifying these input types within a

seconds in length, substantially longer than the 9.12 seconds
typical of OmniBench [34] (which primarily tests English).
This extended duration enables a more rigorous evaluation of
long-form listening comprehension abilities.

I1l. EXPERIMENTS

To demonstrate the utility of Multi-TW and establish
initial performance benchmarks, we conducted experiments
using a variety of publicly available multimodal language
models. This section details our experimental setup, the
models evaluated, and the observed results.

A. Experiment Setup

All experiments were conducted on an NVIDIA
A100-SXM4 80GB GPU. All 900 questions in Multi-TW
were used for evaluation in a zero-shot setting. The evaluation
metric reported is exact-match accuracy, reflecting the
percentage of correctly answered multiple-choice questions.
We detail our prompting strategy, time measurement
protocols, and model selection below.

B. Prompting Strategy.

For all evaluated models, a uniform prompt was appended
to each question. This prompt instructs the model to directly
output a single character representing the chosen option,
without any additional explanation or reasoning. The general
prompt template provided to the models is as follows:
{question} (g H EREE ZEHY 1) &= ARy ‘A B, 'C
D it PR o BL(E B - SERR#FE - This prompt instructs
the model to directly output a single character representing
the chosen option, without any additional explanation or
reasoning.

C. Time Measurement.

We recorded the elapsed time for four sequential stages:
data loading, data preprocessing, model inference, and metric
computation. Data preprocessing and model inference account
for the majority of runtime and utilize identical code across all
open-source models. Therefore, our timing analysis focuses
primarily on the combined duration of these two phases for
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open-source models. Closed-source models were omitted
from this specific latency analysis, as their response times are
dominated by external API calls and network transmission,
which are not directly comparable. To eliminate variability
from differing output lengths, we fixed the model’s maximum
generation length to one token for all timed experiments.

D. Model Selection

We evaluated several any-to-any models that process text,
image, and audio inputs to generate text output in Traditional
Chinese, as well as several VLMs where audio input was
provided via ASR transcripts. These models, presented in
Tables Il and I, span both closed- and open-weight
categories and were selected based on their state-of-the-art
performance, availability, architectural diversity, and varying
degrees of exposure to Chinese language data.

For closed-source any-to-any models, we selected
gemini-2.0-flash and gemini-1.5-flash from Google. For
open-source any-to-any models, we chose the Qwen2.5-Omni
series and Baichuan-Omni-1.5, both pretrained primarily on
Simplified Chinese. Although Simplified and Traditional
Chinese share lexical similarities, they differ substantially in
character forms and orthographic conventions. We also
incorporated UnifiedlO-2, an encoder-decoder Transformer
pretrained from scratch mostly on English data (with a small
multilingual fraction from mC4 [39]), making it a useful test
for zero-shot cross-script transfer as it has not been
specifically fine-tuned for either Chinese variant. For VLMs,
we employed Whisper-large [24] to transcribe audio inputs
into text for the audio-text tasks. The selected VLMs include
Qwen2.5-VL-7B, Qwen2-VL-7B, Llama-3.2-11B-Vision,
UI-TARS-1.5-7B, ldefics2-8b, the LLaVA series, and
PaliGemma2. This selection reflects the current landscape
and provides a broad overview of VLM capabilities on our
benchmark.

IV. RESULT AND ANALYSIS

This section offers a summary of performance across all
evaluated models on the 900-item Multi-TW benchmark,
comparing accuracy on the image-text and audio-text subsets
alongside inference latency.

A. Performance on Any-to-Any Models.

Table Il illustrates the results for any-to-any models across
overall accuracy, image-text subset accuracy, audio-text
subset accuracy, and inference time. Key observations
include:

1) The Qwen2.5-Omni series and Baichuan-Omni-1.5,
despite being primarily pretrained and fine-tuned on
Simplified Chinese, achieve competitive accuracy on
Traditional Chinese inputs, particularly on audio-text tasks.

2) In contrast, UnifiedlO-2-XL, with limited exposure to
Chinese, often failed to produce meaningful answers. Manual
inspection of its responses (when constraining output length to
30 tokens) revealed that in 78 cases the model echoed the first

TABLE II.

PERFORMANCE OF ANY-TO-ANY MULTIMODAL MODELS ON MULTI-TW.
Accuracy Latency
Models Overall Ir_pg)g(;te- A;_Jg)i(?' Inference Time (s)

gemini-2.0-flash 0.8900 0.8800 0.9000 -
gemini-1.5-flash 0.8111 0.7644 0.8578 -
Qwe”27'5B'om”i' 06534 | 04156 | 08911 744
Baichuar-Omni- | 6289 | 04822 | 0.7756 569
QuenzS-0mni- | osg78 | 03377 | 08378 712
UnifiedlO-2-XL 0.2589 0.2600 0.2578 467

TABLE IIl.

PERFORMANCE OF VISION-LANGUAGE MODELS (VLMS) wiTH ASR
(WHISPER-LARGE) ON MULTI-TW.

Accuracy Latency
Models Overall | 1mage- Audio- Tference
Text Transcription Time (s)

Qwen2.5-VL-
7B-Instruct 0.8423 0.8267 0.8578 1216

Quen2VL-7B- | 08033 | 07822 0.8244 1187

nstruct
UI-TARS-
15-7B 0.7823 0.7378 0.8267 2131

Llama-3.2-11B-

Vision-Instruct 0.5578 0.4711 0.6444 1308
idefics2-8b 0.4167 0.5156 0.3178 1228
ava-vi6-— | ¢ 4100 | 04178 0.4022 1305
mistral-7b
llava-v1.6-
vicuna-7b 0.3345 0.4022 0.2667 1302

llava-v1.5-7b 0.3211 0.3911 0.2511 1201
paligemma2-
10b-pt-896 0.2600 0.2800 0.2400 1727

option’s Chinese description, and in 807 cases it consistently
selected option “A.”

3) Qwen2.5-Omni-7B exhibited the longest inference time
among the open-source any-to-any models, approximately
30.8\% longer than Baichuan-Omni-1.5 (11B parameters).
This suggests that parameter count is not the sole determinant
of inference speed.

4) The results reveal a significant performance gap
between open-source and closed-source models, especially in
the image-text domain, highlighting the urgent need for
dedicated Traditional Chinese fine-tuning and more robust
vision components in open-source any-to-any models.

B. Performance on Vision Language Models (with ASR).

We evaluated a range of VLMs using Whisper-large for
audio transcription. Table IIl reports overall accuracy,
image-text accuracy, audio-transcript-text accuracy, and
inference time. Key observations are:

1) Qwen2.5-VL-7B-Instruct and UI-TARS-1.5-7B lead
among the evaluated VLMs. The competitive results from
these models, developed by organizations with a strong focus
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on Chinese Al, suggest that extensive pre-training on relevant
Chinese-language corpora is a crucial factor for strong
performance.

2) In contrast, models like Llama-3.2-11B-Vision-Instruct,
despite their large parameter counts or general multimodal
capabilities, exhibit notably lower performance, potentially
due to less exposure to Traditional Chinese data or specific
task alignments.

C. Performance on Latency.

Open-source any-to-any models completed inference in a
range of 467—744 seconds for the entire 900-item benchmark.
In comparison, VLMs coupled with an ASR pipeline
(Whisper-large for audio transcription, then VLM for
comprehension) required 1,187-2,131 seconds, reflecting the
overhead of the two-stage processing for audio-related tasks.
In addition, while closed-source models' runtimes are not
directly comparable due to API encapsulation, they generally
exhibit higher end-to-end latency in practice for batch
processing due to network factors, though individual query
latency might be low.

V. CONCLUSION

To address the gap in evaluating Multimodal Large
Language Models capable of processing visual, acoustic, and
textual inputs, particularly in Traditional Chinese, we
introduced Multi-TW, the first benchmark of its kind. This
dataset provides new insights into current multimodal large
language models' abilities, including their performance and
latency on Traditional Chinese tasks.

Our evaluation reveals that while closed-source models
generally achieve strong performance across both image and
audio modalities, open-source alternatives currently tend to
perform better on audio-text tasks compared to image-text
tasks when using any-to-any architectures. The VLM plus
ASR approach can achieve strong results but incurs higher
latency for audio tasks. We also found that end-to-end
any-to-any models offer notable latency advantages over
cascaded VLM plus ASR pipelines for processing audio
inputs. Our findings underscore the need for more appropriate
architecture designs and targeted fine-tuning data for robust
multimodal integration, especially for Traditional Chinese.

In future work, we will examine how cross-lingual transfer
capabilities influence the performance of Simplified
Chinese-trained models on Traditional Chinese reasoning
tasks. We also plan to evaluate latency under more rigorous,
parallelized experimental conditions and explore alternative
settings, such as streaming inference. Furthermore,
expanding Multi-TW to include generative tasks and more
complex reasoning scenarios will be a key direction.
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