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Abstract
In traditional test models, test items are independent, and test-takers slowly and thoughtfully
respond to each test item. However, some test items have a common stimulus (dependent test
items in a testlet), and sometimes test-takers lack motivation, knowledge, or time (speededness),
so they perform rapid guessing (RG). Ignoring the dependence in responses to testlet items can
negatively bias standard errors of measurement, and ignoring RG by fitting a simpler item re-
sponse theory (IRT) model can bias the results. Because computer-based testing captures re-
sponse times on testlet responses, we propose a mixture testlet IRT model with item responses
and response time to model RG behaviors in computer-based testlet items. Two simulation
studies with Markov chain Monte Carlo estimation using the JAGS program showed (a) good
recovery of the item and person parameters in this new model and (b) the harmful consequences
of ignoring RG (biased parameter estimates: overestimated item difficulties, underestimated time
intensities, underestimated respondent latent speed parameters, and overestimated precision of
respondent latent estimates). The application of IRT models with and without RG to data from a
computer-based language test showed parameter differences resembling those in the simulations.
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In the traditional view of testing, students slowly and thoughtfully try to answer test items
(solution behaviors). However, sometimes test-takers lack motivation, knowledge, or time
(speededness) and give quick, unreflective responses (rapid guessing, RG). Students’ RG might
occur on not only independent test items but also dependent test items associated with a common
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stimulus (e.g., story for reading comprehension items, testlets; Wainer et al., 2007). Ignoring RG
by fitting a simpler item response theory (IRT) model can bias the results, and ignoring the
dependence in test-taker responses to testlet items can negatively bias standard errors of mea-
surement. Among computer-based testing’s (CBT) many benefits (textured computer test items
via video or human–computer interaction, standardization of testing with fewer confounding
human factors, greater flexibility in testing times and locations, quick reporting of test results,
etc.), it notably records the amount of time taken by a test-taker before answering a test item
(response time, RT), which enables the modeling of test-takers’ RG on independent items and
testlet items.

Because standard IRT models assume that test-takers exert maximal effort on each item, RG
can bias the estimates of ability and item parameters, threaten test validity and reliability, and yield
improper conclusions. Thus, many IRT models have been developed for both response accuracy
and RG (Wang & Xu, 2015; Wang et al., 2018; Wise & DeMars, 2006). Properly modeling them
improves the accuracy of test-taker ability estimates, enhances test validity and reliability, and
informs the design of high (vs. low) time pressure tests.

Many tests have items with a common stimulus (item bundle or testlet), such as several
multiple-choice (MC) items for a reading comprehension passage. Such test design usually
violates the local independence assumption of a unidimensional IRT model. Specifically,
responses to items within a testlet likely resemble one another more than the responses to
items in different testlets. Failing to consider the local dependence among testlet items often
overestimates reliability of the test (Sireci et al., 1991). Hence, testlet response models have
been developed to fit assessment data with testlets (Wainer et al., 2007; Wang & Wilson,
2005).1

A CBT can display testlet items in two formats: one item per page (one/page) or all items on a
page (all/page). Like an independent item, each one/page testlet item is sequentially shown,
enabling the recording of its RT. By contrast, all/page testlet items are presented together; thus,
only their collective RT is available. Hence, detecting RG under the two testlet formats might
require different methods.

In this study, we review the literature of modern IRT models for RT, RG, and testlets before
presenting a new class of IRTmodels that captures RG on tests with the two types of testlets. Then,
we conduct two simulation studies to evaluate the parameter recovery for testlet data and the
consequences of ignoring RG. Next, we apply our model to a computer-based reading test before
discussing the results and concluding the study.

Literature Review

For any test item, a test-taker might exert effort to correctly answer it (solution behavior), each
respectively resulting in progressively longer RT (Wise & Kong, 2005), or perform RG. Ideally,
test-takers can carefully read the test item and spend time and effort to find the correct answer,
resulting in the longest RT. However, some test-takers have little time, especially at the end of a
test, so they might perform RG without fully reading the items, yielding extremely short RTs.
Kong et al.’s (2007) study of four RT thresholds for RG yielded similar results; therefore, they
suggested a 3-second threshold for all items. Studies show that RT has a bimodal distribution for
most test-takers, differentiating RG behaviors from solution behaviors (e.g., Wise & Kong,
2005).

Standard IRT models for RT assume that test-takers exert maximal effort to find solutions for
each test items; thus, their responses and RTs reflect their latent abilities and speed levels, re-
spectively. However, because test-takers with shorter RTs than others might have superior ability,
RT data can improve the estimation of the targeted ability, as shown in De Boeck and Jeon’s (2019)
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summary of joint IRT models of item responses and RT. Notably, in van der Linden’s (2007)
commonly used hierarchical model, a log transformation enables the statistical methods developed
on normal models to be directly applied to RT. Similar in concept to a standard IRT model, the
logarithmized RT for an item is regressed on two main effects at the first level of the hierarchical
model: the speed parameter of a test-taker and the time intensity parameter of an item. At the
second level, a bivariate normal distribution describes the relation between the latent ability and
latent speed.

Solution and RG behaviors can be jointly taken into account in a measurement model. For
example, Meyer (2010) integrated a two-class mixture Rasch model (Rost, 1990) with a lognormal
mixture model of RT (Schnipke & Scrams, 1997) to classify a test-taker as either only RG or only
showing solution behaviors, without allowing different behaviors by the same person. Wang and
Xu’s (2015) model has a latent indicator, allowing a test-taker to pursue either solution behavior or
RG for each item. This indicator can depend on either each test-taker’s RG propensity or an item-
level feature (Wang et al., 2018).

The above methods for analyzing RTcan model RG behaviors on independent items but not on
a testlet’s dependent items, whose responses and RTs might be correlated. For example, a test-
taker might read the common stimulus of a testlet (e.g., a story on a reading comprehension test),
have difficulty understanding it, and thereby perform RG on all the items in the testlet. Because the
RT for the first item on a testlet includes reading the story, it will be long; RTs therefore might not
detect RG on the first item in a testlet. (If a test-taker does not read the story and performs RG on
the first testlet item, the RTwill still be short). In contrast, a test-taker might only guess on the later
items in a testlet, which are often more difficult than the first few items. These examples show why
the existing models for RG might not apply to testlet response data. Hence, we propose a new
model for RG on testlets.

New Models for RG in Testlets

ACBTcan comprise independent items and testlet items and automatically record test-takers’ RTs
on each item. Hence, we propose a general framework for solution and RG behaviors on in-
dependent, one/page, and all/page items. We begin with the item response function for inde-
pendent items

Pij ¼
exp

�
θi � bj

�
1þ exp

�
θi � bj

�, (1)

where Pij is the probability of test-taker i (i = 1,…, I) correctly answering item j (j = 1,…, J), θi is
the latent ability of test-taker i, and bj is the difficulty of item j. Equation (1) represents the one-
parameter logistic model (Rasch, 1960); this model can be replaced by any other IRT model.
According to past studies (Meng et al., 2015; Meyer, 2010; van der Linden, 2006; 2007), a
lognormal function suitably describes the distribution of RTs in cognitive tests. Thus, we can
isolate the two major facets that influence the observed response time (RTij): test-taker’s speed and
item’s time intensity

log ðRTijÞ∼N ð�τi þβj, 1
�
α2j Þ, (2)

where τi is the speed of test-taker i; βj is the time intensity of item j; and αj is the time dis-
crimination parameter of item j, indicating the dispersion of the distribution of logarithmized RT.
To model the testlet effects of the one/page items, Equations (1) and (2) are extended to the
following
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Pij ¼
exp

�
θi þ γidðjÞ � bj

�
1þ exp

�
θi þ γidðjÞ � bj

�, (3)

logðRTijÞ∼Nð�τi �λidðjÞ þ βj, 1
.
α2j Þ, (4)

where γid(j) and λid(j) are the interactions of test-taker i and item j within testlet d. Equation (3)
presents the testlet IRT model in the Rasch framework (Wang & Wilson, 2005). Thus, γid(j) and
λid(j) are the testlet effects on response accuracy and RT, respectively. Because the distinct RT for
all/page items within a testlet is not available, quantifying the item-person interaction on the RT
for all/page items is not feasible. To accommodate all/page items, equation (4) can be modified

logðRTidÞ∼Nð�τi þβd, 1
�
α2dÞ, (5)

where βd and αd are the mean time intensity and time discrimination of all/page items within
testlet d, respectively. Together, Equations (3), (4), (5) represent the testlet model for RT (TM-
RT).

The TM-RT requires the estimation of several random variables: θi, τi, γid(j), and λid(j). As
the number of testlets increases, the TM-RT becomes increasingly complex, as shown in
Equations (3), (4), (5). According to the experiences of many past studies (e.g., Huang, 2020;
Kim & Bolt, 2021; Man et al., 2019), using the following semi-informative priors enables
efficient estimation of the TM-RT parameters via Bayesian methods with Markov chain Monte
Carlo (MCMC):

�
θi
τi

�
∼MVN ½0,Σ�,

γidðjÞ ∼N
	
0, σ2

γd



,

λidðjÞ ∼N
�
0, σ2λd

�
,

bj ∼ N(0, 0.1),
βj ∼ N(0, 0.1),
αj ∼ N(0, 0.1).

Constraining the means of the four types of latent continuous variables (i.e., θi, τi, γid(j), and
λid(j)) to zero makes the TM-RT identifiable. The priors for the hyper-parameters are specified as
follows

Σ ∼ Inverse-Wishart(I, 2),
σ2γd ∼ Inverse-Gamma(0.1, 0.1),

σ2λd ∼ Inverse-Gamma(0.1, 0.1),

where I is a 2 × 2 identity matrix.
Because the TM-RT does not account for test-takers’ RG behaviors, we extend it to the mixture

testlet model for RG behaviors (MTM-RG). For independent items, Equations (1), (2) are ex-
tended to the following:

Pij ¼ Δij ×P0j þ
�
1� Δij

�
×

exp
�
θi � bj

�
1þ exp

�
θi � bj

�, (6)
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log ðRTijÞ∼N
	
Δij × β0 þ

�
1� Δij

�
×
��τi þ βj

�
, 1

.	
Δij × α

2
0 þ

�
1� Δij

�
× α2j




, (7)

where P0j is the uniform probability of getting the correct answer for test-takers who perform RG
rather than use solution behaviors (i.e., 1/kj, where kj is the number of options for MC item j); Δij

indexes the latent group membership of test-taker i on item j (i.e., 1 = RG behaviors and 0 =
solution behavior); and β0 and α0 are the mean time intensity and time discrimination parameters
for RG behaviors, respectively. Equation (7) also suggests that the observed RT for solution and
RG behaviors forms a bimodal distribution. For one/page items, Equations (3) and (4) can be
extended as follows

Pij ¼ Δij ×P0j þ
�
1� Δij

�
×

exp
�
θi þ γidðjÞ � bj

�
1þ exp

�
θi þ γidðjÞ � bj

�, (8)

log ðRTijÞ∼N
	
Δij × β0 þ

�
1� Δij

�
×
��τi � λidðjÞ þ βj

�
, 1
.	

Δij × α
2
0 þ

�
1� Δij

�
× α2j




: (9)

For individual and one/page items, Δij is subject to the likelihood of item response function and
observed RT. Because the total (or mean) RT for all/page items within a testlet does not help
identify RG on a specific item, the item response function for all/page items in the MTM-RG is
identical to Equation (8), and Equation (5) can be applied to deal with RT. In this way, only the
likelihood of the item response function helps identify RG on all/page items.

The latent membership Δij in the MTM-RG is a binary result of a test-taker’s decision on a
specific item and depicts the dependency between response accuracy and speed. It can be modeled
as either Δij ∼ Bernoulli(πi) or Δij ∼ Bernoulli(πj). The person-specific guessing proportion
parameter πi represents the RG propensity of test-taker i (Wang &Xu, 2015). In contrast, the item-
specific parameter πj denotes the marginal probability of test-takers performing RG on item j (Jin
et al., 2022; Wang et al., 2018), which helps detect test-takers’ RG on items near the end of a test
(speededness). We discuss these two methods further in the simulation studies.

The label switching problem in mixture modeling can be resolved by distinguishing between
solution and RG behaviors in the MTM-RG (Equations (6), (7), (8), (9)). We add a conservative
constraint of βj ≥ β0 to ensure the identification of RG onlywhen its RT is significantly lower than the
expected RTof a solution behavior for each item. To realize this constraint, β0 is restricted to follow a
truncated normal distribution with an upper bound of the minimum of βj during calibration.

Many factors may influence the performance of the MTM-RG. For example, the precisions of the γ-
and λ-parameters are linked to the number of itemswithin a testlet. Among testlets, thosewithmore items
often yield greater precision. In addition, a larger sample size can improve estimation of πj for each item.
Likewise, capturing test-takers’ marginal probabilities of RG (i.e., πi) requires more test items.

Item properties also influence the estimation of Δij. To distinguish normal and RG test-takers,
ideally, the probability of the correct answer for an independent or testlet item differs sharply for their
corresponding responses, and their RTs show a bimodal distribution. If their item response functions
are similar or their RTs are not clearly bimodal, these new models are unlikely to perform well.

Simulation 1

Design. We evaluated the proposed model’s parameter recovery and the consequences of ignoring
RG and testlet effects via a simulation of 2000 test-takers responding to 30 dichotomously scored
items; these include 10 independent items, 2 one/page testlets with 5 items each, and 2 all/page
testlets with 5 items each. Because the relationship between the ability and speed latent traits (θ, τ)
could vary in practice (Bolsinova et al., 2017), in the simulation, we assumed that the two random
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variables were weakly and positively correlated. Thus, the person parameters were generated from
the following distributions: [θi, τi]

0 ∼MNV(0, Σ). The variances of θ and τ were set at 1 and 1.44,
respectively, and the correlation of the two variables was .2. The additional factors for the 2 one/
page testlets were set at γi1(j) ∼ N(0, 0.8), γi2(j) ∼ N(0, 0.8), λi1(j) ∼ N(0, 0.8), and λi2(j) ∼ N(0, 0.8),
and those for the 2 all/page testets were set at γi3(j) ∼ N(0, 0.8) and γi4(j) ∼ N(0, 0.8). The item
parameters were randomly generated from the following distributions: bj ∼ N(0, 1), βj ∼ N(4,
0.25), and αj ∼ N(1, 0.0625). In the no RG condition, item responses were generated via the TM-
RT. In the RG condition, two marginal probabilities of RG (πj) were jointly manipulated: 10% for
items 1–5, 11–15, and 21–25 and 20% for items 6–10, 16–20, and 26–30. For RG behaviors, β0 =
2 and α0 = 0.5, following the parameter estimates in our empirical example. For each condition,
100 data sets were generated. The TM-RT and MTM-RG were fit to the simulated data. Two
constrained models of the MTM-RG were also examined. The first constrained model without
local dependence parameters (denoted as MM-RG) was fit to the data to determine whether
ignoring the dependence among testlet items affects parameter estimation. The second constrained
model, in which only item responses are analyzed (denoted as No-RT; equation (8) only), was fit to
the data to determine whether the π-parameters can be precisely recovered when RT is not
available.

Analysis

We estimated the parameters of the four IRT models, TM-RT, MTM-RG, MM-RG and No-RT,
using JAGS (Plummer, 2017) with the R2jags package (Su & Yajima, 2015) in R using three
chains with 20,000 iterations. The first 10,000 burn-in iterations were dropped, and the subsequent
10,000 iterations were retained to form the posterior distributions of the estimated parameters. The
expected posteriori value (i.e., the mean) of each parameter served as its point estimate. The
potential scale reduction factor (PSRF) (Gelman & Rubin, 1992) helped monitor the convergence
of the posterior distributions. The JAGS code to run the MTM-RG in R is publicly accessible on
the Open Science Framework (https://osf.io/fkcva/).

To evaluate parameter recovery, the bias and root mean square error (RMSE) of item estimates
were computed across 100 replications

BiasðωÞ ¼
X100

r¼1

�bωr � ω
��

100, (10)

RMSEðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100

r¼1

�bωr � ω
�2�

100

vuut , (11)

where ω and bωr are the true and estimated values in the r-th replication, respectively.
We expect the following results: When RG behaviors do not occur (i.e., data generated via the

TM-RT), the MTM-RG and TM-RT show similar parameter recovery. When RG behaviors occur
(i.e., data generated via the MTM-RG), the MTM-RG recovers the parameters well, whereas the
TM-RT yields biased parameter estimates.

Results

Throughout the 100 replications for estimated parameters under the TM-RT or MTM-RG across
the RG and no RG conditions, the PSRF values were between 1.00 and 1.05, suggesting sat-
isfactory convergence of the two models. Under the no RG condition, both the TM-RT (data
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generating model) and the MTM-RG yielded similar and accurate parameter estimates (see
Appendices 1-4). Hence, fitting the MTM-RG to data generated from the TM-RT yielded good
parameter recovery.

Appendices 5-8 list the parameter recovery for the four models under the RG condition. Fitting
the TM-RT yielded biased estimates for item difficulty (M = 0.229; range: �0.206 to 0.844), time
intensity (�0.206; �0.591 to �0.009), and time discrimination (�0.200; �0.486 to �0.024).
Likewise, compared to the MTM-RG, the TM-RT showed larger RMSE values for item difficulty
(0.271; 0.079–0.847), time intensity (0.223; 0.048–0.595), and time discrimination (0.204; 0.037–
0.486). These results show that when a measurement model ignores substantial RG behaviors, test
items can be mistakenly evaluated as more difficult, less time-consuming, or less sensitive to
differences in respondents’ speeds. Moreover, the TM-RT uniformly underestimated the variances
of random variables, which tends to lead to an overestimation of testlet effects.

By contrast, the MTM-RG, compared to the TM-RT, yielded accurate parameter estimates with
smaller biases (for item difficulty [�0.004; �0.135 to 0.044], time intensity [�0.010; �0.021 to
0.002], and time discrimination [0.003; �0.006 to 0.013]) and RMSE values (for item difficulty
[0.122; 0.080–0.252], time intensity [0.055; 0.043–0.071], and time discrimination [0.033; 0.025–
0.050]). Notably, the bias and RMSE of πj for the independent and one/page items in the MTM-
RG neared zero. Without RT information to identify RG responses to the all/page items (21–30),
their parameter recovery was slightly poorer.

Fitting the MM-RG underestimated the time discrimination parameters for one/page test items
under both conditions. On the contrary, fitting the No-RT based on limited information from
response patterns yielded poor estimation for π-parameters and other item parameters. In brief,
measurement models should jointly consider the occurrence of RG based on RT (if available) and
dependence among items within a testlet.

Simulation 2

Design. Simulation 2 investigated the impacts of RG on person estimates on the same test as that in
Simulation 1. Instead of specifying the proportion of RG for each item, the items were classified
into five groups (500 respondents per group), with each group having a different level of RG (πi):
0%, 20%, 40%, 60%, and 80%. The 0% RG (no RG) group served as the baseline for comparison.
Respondents in other RG groups rapidly guessed on their specified proportion (e.g., 20%) of both
independent and testlet items.

Analysis

To evaluate parameter recovery, we computed the person estimates of θ and τ, the correlations of
their estimates and their true values, and their standard errors. For both θ and τ, we expected higher
correlations among their estimates and their true values (a) for lower RG levels and (b) in the
MTM-RG than in the TM-RT. For both θ and τ, we also expected larger standard errors for larger
proportions of RG in the MTM-RG only, not the TM-RT.

Results

The results largely confirmed our expectations. Figures 1a and 1b show the separation of cor-
relation between their estimates and true values for the five RG groups in the MTM-RG.
Achieving an unbiased θ estimate became more difficult as RG increased. For both θ and τ,
the correlations were generally lower in the TM-RT than in the MTM-RG across different RG
levels. Also, when the proportion of RG was higher, the precisions of the θ and τ estimates were
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Figure 1. Correlation, bias, and standard error of person estimates for the TM-RT and MTM-RG in
Simulation 2.
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either lower or not substantially different. Notably, adding test-takers with higher RG decreased
the correlations between these estimates and their true values. For θ, when 0% and 20%RG groups
were jointly considered, the correlation under the MTM-RG was .86. When other RG groups were
sequentially included from low to high, the correlations were .84, .79, and .74, respectively. The
correlations for τ showed a similar pattern.

Figures 1c and 1d show the separation of bias for the different RG groups in the MTM-RG.
Achieving unbiased θ and τ estimates became more difficult as RG increased. For both θ and τ,
higher proportions of RG yielded larger standard errors for the MTM-RG but similar standard
errors for the TM-RT (see Figures 1e and 1f). Because the standard errors of the TM-RT do not
account for RG, fitting the TM-RT to data with RG can overestimate test reliability.

An Empirical Example

We fit the TM-RT and MTM-RG to the test of Chinese as a foreign language (TOCFL) measuring
non-Chinese speakers’ reading proficiency in Taiwan. A computer-based system randomly ad-
ministers reading items and testlets within 50 min and records test-takers’ item responses and RT.
Test-takers can return to previous items (or testlets) and modify their answer, in which case the RT
of the last attempt is recorded and analyzed.

We analyzed 907 test-takers’ responses to one booklet of the reading test with 50 items. The
booklet comprised 3 independent items, 11 one/page testlets, and 3 all/page testlets, with 2–6
items per testlet. The data matrix was complete (i.e., no missing responses). Figure 2 shows the
histograms of RT for four selected items. Three of them show a bimodal distribution, but item 17
does not. The RT on item 17 (and the subsequent items of the one/page testlets) resembles an
exponential distribution, indicating that the separation in RT is not salient for solution and RG
behaviors. These results are prima facie evidence of test-takers’ RG behaviors.

Analysis

Using the same priors as in Simulation 1, we identified the superior model with the lower deviance
information criterion (DIC) (Spiegelhalter et al., 2002). We compared the item difficulties, time
intensities, and time discriminations of the TM-RTwith those of the MTM-RG.We also computed
the sizes of the testlet effects on response accuracy and RT, σ2γ=σ

2
θ and σ2λ=σ

2
τ , respectively.

Because the test-takers likely performed RG, we expected the MTM-RG to outperform the
TM-RT. The extent to which the 50 reading items triggered RGwas of interest; therefore, the item-
specific guessing proportion parameter πjwas specified in the MTM-RG. Based on Simulation 1, a
measurement model that ignores substantial RG behaviors, namely, the TM-RT (rather than the
MTM-RG), tends to assess items to (a) be more difficult, (b) be less time intensive for individual
items and one/page testlets, and (c) have less time discrimination for individual items and one/
page testlets. Compared with the MTM-RG, the TM-RT can also (d) underestimate the variances
of random variables, thereby overestimating testlet effects. We also expect (e) greater response
accuracy to accompany shorter RT, (f) substantial and varied RG, and (g) varied answering
strategies.

Results

The simulation results generally supported our expectations. Because the DIC was lower for the
MTM-RG than for the TM-RT (376,770 < 425,635), the MTM-RG fit the data better, suggesting
substantial RG and testlet effects. The estimated item difficulties were generally higher in the TM-
RT than in the MTM-RG (bTM-RT � bMTM-RG: M = 0.27, range: �0.18–1.72; see Figure 3a).
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Moreover, the time intensity estimates were generally lower in the TM-RT than in the MTM-RG
(see Figure 3b). Because the item intensity of the first one/page item within a testlet was uniformly
the highest, test-takers likely needed more time to understand the contents of the testlets before
responding to the first testlet item. The estimated time discriminations were generally lower in the
TM-RT than in the MTM-RG (see Figure 3c). In brief, these reading test results confirm our
expectations (a)–(c), namely, a measurement model that ignores substantial RG behaviors (TM-
RT) tends to assess items to (a) be more difficult, (b) be less time intensive for individual items and
one/page testlets, and (c) have less time discrimination for individual items and one/page testlets.

The TM-RTandMTM-RG showed testlet effects on response accuracy and RT (see Figure 3d).
Both the TM-RT and MTM-RG showed that the 4th, 12th, and 13th testlets had larger effects than
the other testlets on response accuracy. The 11 one/page testlets showed moderately larger testlet
effects on RT in the TM-RT than in the MTM-RG. By contrast, the three all/page testlets showed
slightly larger testlet effects on RT in the MTM-RG than in the TM-RT.2 Thus, these results also
confirm expectation (d), that TM-RT underestimates the variances of random variables, which
causes overestimates of testlet effects.

Figure 2. Histogram of RTs in the reading test. Note. The mean RT on the 3rd all/page testlet was used to
draw Figure 2d.
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Appendix 9 displays the relationship between the parameter estimates of the 50 items for the
MTM-RG. Because the RT is not informative for all/page items, they are not discussed here. Item
difficulty and item intensity did not have a strong linear relationship. More difficult items often
had more homogeneous time discrimination. Similarly, items with lower time intensity had more
homogeneous time discriminations.

The MTM-RG showed a link between response accuracy and RT, substantial and varied
RG, and varied answering strategies. Response accuracy (θ) and speed (τ) were weakly
correlated (r = .24), indicating that test-takers with better Chinese reading abilities than
others more quickly answered the questions. Furthermore, the estimated RG mean time
intensity (β0) was 2.05 (SE = 0.04) and time discrimination α0 was 0.48 (0.01). The marginal
probability of RG was substantial (M = 0.196) and varied widely across items (0.006–0.616,
see Figure 4a). For one/page and individual items, the correlation between π and b estimates
was .73, indicating that test-takers were more likely to randomly guess on items that were
more difficult. In addition, as the RT information to identify RG responses was minimal, all/

Figure 3. Item parameter estimates for the TM-RT and MTM-RG in the reading test. Note. The 1st, 2nd, and
14th testlets are presented in the one/page design. They are items 1–6, 7–12, and 45–50, respectively.

Jin et al. 29

https://journals.sagepub.com/doi/suppl/10.1177/01466216221125177


page testlet items generally had a larger standard error for π estimates, echoing the finding in
Simulation 1. Figure 4b shows the probability density functions of RT for solution (solid curves, one
for each item) and RG (dashed curve) in the MTM-RG, which suggests that these test-takers used
varied answering strategies to spend more time on some items and less time on others (including
RG) to achieve a higher overall test score. Because different test-takers faced different item orders,
we cannot test whether RG occurred more often on items near the end of the test. The above results
were consistent with our expectations (e)–(g) (greater response accuracy to accompany shorter RT,
substantial and varied RG, and varied answering strategies).

Because theMTM-RG estimates the time needed for effortful test-takers to complete each item,
we can estimate the time that each test-taker needs to complete the entire test. According to the
MTM-RG, only 69.8% of the test-takers can apply their full effort to all test items within the
allotted 50 min of test time; thus, 30.2% of the test-takers face time pressures and likely guess on
some items. Extending the test time to 60 min reduces the time pressure on only 23.5% of the test-
takers. To sharply reduce the time pressure for almost all of these test-takers (say 99% of them), the
MTM-RG indicates a time limit of 252 min (over 4 hours). Hence, the MTM-RG can specify how
to change a high time-pressure exam into a low time-pressure one (and vice versa) for most test-
takers.

Conclusion and Discussion

To model RG in computer-based testlets with one/page or all/page testlet items, we proposed and
tested two testlet IRT models with item responses and RT: TM-RT and MTM-RG. The TM-RT
quantifies (a) the latent traits of response accuracy and speed and (b) the testlet effects on the
probability of item correctness and the corresponding RT. Extending the TM-RT, the MTM-RG
also accounts for RG behaviors.

The simulation results showed that the TM-RTandMTM-RG both fit data with no RG well but
that the MTM-RG outperforms the TM-RTon data with RG. For data with RG, the TM-RTyields
biased parameter estimates, assessing items to be excessively difficult, be insufficiently time
intensive, and have insufficient time discrimination, along with insufficient variances of random

Figure 4. Marginal probability of RG and the probability density functions of RT under the MTM-RG in the
reading test.Note. The three all/page testlets are items 1–6, 7–12, and 45–50. The upper and lower bounds
define the 95% probability interval. The all/page testlets are excluded in Figure 4b.
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variables. With proportionately more RG, the measurement precision of the assessment was lower.
For testlet items, the all/page design lacks RT for each item; therefore, the MTM-RG is less
sensitive to RG responses for all/page items.

We also applied both the TM-RTandMTM-RG to 907 test-takers’ responses to the reading test.
The MTM-RG fit the data better than the TM-RT, indicating substantial RG and varied answering
strategies across items (including selective RG). Similar to the findings of the simulations, the TM-
RT generally yielded higher item difficulties, lower time intensities, and lower time discrimi-
nations than the MTM-RG. Moreover, the MTM-RG showed that the magnitudes of the testlet
effects varied, highlighting the need to attend to local dependence among items within testlets.

For any new analysis, we recommend fitting different models to the data and comparing their
item/person parameters (rather than only using MTM-RG). If the differences between models are
small (i.e., tiny RG effects or testlet effects), reporting the results of the simpler model can aid
audience understanding and hence be more practical.

Although this study shows the feasibility of the MTM-RG, future studies can generalize it
along several axes. First, to help estimate latent membership, Δij can be regressed on item and/or
person covariates (if any) in a logistic regression function. Second, because some CBTs allows
test-takers to change their answers on previous items (Jeon et al., 2017), future studies can model
such behaviors. Third, the MTM-RG can be generalized to accommodate other aberrant response
behaviors, such as preknowledge (Wang et al., 2017) or nonresponses (Ulitzsch et al., 2020).

Many factors (e.g., item administration, test-taker strategies) might affect accurate RT mea-
surement for individual items within a testlet. For example, the administration of items on a paper-
and-pencil test versus a computerized adaptive test might affect how test-takers perceive the items
(e.g., degree of difficulty) and their attention to them. These perceptions in turn might affect test-
taker strategies on how to understand and respond to each item (e.g., in which order do they
answer the items on a testlet). Hence, future studies should test the robustness of their models
against empirical data (preferably in diverse contexts).

In this study, we used JAGS to estimate the parameters, which required longer computation
time. For example, in Simulation 1, each MTM-RG and TM-RT analyses took an average of 50
and 200 minutes to complete with a 3.6-GHz Intel Core i7 processor. Other software can also
implement the MTM-RG (e.g., OpenBugs [Spiegelhalter et al., 2010] and Mplus [Muthén &
Muthén, 1998–2017]). Future studies can compare the efficiencies of these software in fitting the
MTM-RG across data sets.
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Notes

1. Testlets can be also modeled with polytomous-item and item-bundle approaches. For the pros and cons of
different approaches, see Wang and Jin (2016).

2. Because only some testlets showed substantial testlet effects, it is not surprising that the MM-RG fit the
empirical data better than the MTM-RG did (DICMM-RG < DICMTM-RG: 353,908 < 376,770).
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